Quantum dot conjugated hydroxylapatite nanoparticles for in vivo imaging.

نویسندگان

  • Yan Guo
  • Donglu Shi
  • Jie Lian
  • Zhongyun Dong
  • Wei Wang
  • Hoonsung Cho
  • Guokui Liu
  • Lumin Wang
  • Rodney C Ewing
چکیده

Hydroxylapatite (HA) nanoparticles were conjugated with quantum dots (QDs) for in vivo imaging. The surface structures of HA nanoparticles with conjugated quantum dots (HA-QD) were studied by transmission electron microscopy (TEM) and laser fluorescent spectroscopy. The TEM data showed that the quantum dots were well conjugated on the HA nanoparticle surfaces. The laser fluorescent spectroscopy results indicated that the HA-QD exhibited promising luminescent emission in vitro. The initial in vivo experiments revealed clear images of HA-QD from the hypodermic injected area at the emission of 600 nm. Furthermore, the optimized in vivo images of HA-QD with near-infrared emission at 800 nm were visualized after intravenous injection. These luminescent HA-QD nanoparticles may find important applications as biodegradable substrates for biomarkers and in drug delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doxorubicin Loaded Liposomal Nanoparticles Containing Quantum Dot for Treatment of Breast Cancer

In addition to increasing the efficacy of various drugs, Nanoparticles reduce their side effects. In this study, different nanoparticle formulations of Doxorubicin anticancer drugs were prepared. The efficacy of the formulations produced in the cell culture medium was studied compared with the free drug. Reverse phase evaporation was used to form the liposome containing do...

متن کامل

Engineering Antibody Fragment with the Quantum Dot in Cancer Cell Imaging and Diagnosis

The conjugates of monoclonal antibodies and nanoparticles, including quantum-dot(QD), offer significant advantages over conventional fluorescent probes to image and study biological processes. The extend stability, intense fluorescence and low toxicity of QDs are well suited for biological applications. In the present study, we used QD-conjugated anti-glucose-regulated protein 78(GRP78) antibod...

متن کامل

Functionalized Quantum Dot Characterization and Applications in Neurosciences

Antibody or peptide conjugated nanoparticles are a new technology useful for targeting and imaging biological systems. However, characterization of these functionalized nanoparticles has not yet been accomplished. This is essential for the evaluation of the efficacy of the nanoparticles. In this study, we characterize antibody functionalized quantum dot nanocrystals from experimental data. We f...

متن کامل

Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells.

Apoptosis, or programmed cell death, plays an important role in the etiology of a variety of diseases, including cancer. Visualization of apoptosis would allow both early detection of therapy efficiency and evaluation of disease progression. To that aim we developed a novel annexin A5-conjugated bimodal nanoparticle. The nanoparticle is composed of a quantum dot that is encapsulated in a parama...

متن کامل

In vivo effects of quantum dot on organs development before maturity

Objective(s):  The field of nanotechnology is rapidly expanding .The development quantum dots quantum dot (QDs), show great promise for treatment and diagnosis of cancer and targeted drug delivery little data on the toxicity of QDs, especially for in vivo applications, are available. As a result, concerns exist over their toxicity for in vivo applications. Then, cytotoxic effects of cadmium sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 19 17  شماره 

صفحات  -

تاریخ انتشار 2008